@ CTN Test Report AFTB-ID
cusestierwore 91-045 91-013

How to VALIDATE
DOCUMENT TYPE
DEFINITIONS (DTDs)

71 QUALITY TNSPECTED 4

2 April 1992

T o 19960826 088

DISTRIBUTION STATEMENT X

Approved for public release;
| Distribution Unlimited

CTN Test Report
91-045 AFTB-ID-91-013
2 April 1992

’ How to VALIDATE DOCUMENT
TYPE DEFINITIONS (DTDs)

2 April 1992

Prepared By
SOFTWARE EXOTERICA CORPORATION/CENTECH

Prepared For
Air Force CALS Test Bed (AFMC/ENCT)
Wright-Patterson AFB OH 45433-5000

AFTB Contact
Gary Lammers
(513) 257-3085

| CTN Contact
| Mel Lammers
| (513) 257-3085

CTN Test Report AFTB Test Report
91-045 91-013

DISCLAIMER

This report and those involved in its preparation do not endorse any
product, process, or company stated herein. Use of these means by anyone

does not imply certification by the CALS Test Network.

ii

How To Do
Independent Verification And Validation
On An
SGML-Defined
Markup Language

iii

CIN Test Report 91-045 AFTB Test Report
CALS DTD Verification & Validation 91-013

| Table of Contents

1. INTRODUCTION 1
1.1 Back@roUnd ..o 1
11T CALS s 2
T.1.2 SGML it 3
1.1.3 MIL-M-28001 and MIL-M-2800TA......c.ccoviriiiiiiriiireeeecce 4
1.2 What Is A Markup Language? ... 6
1.2.1 Types of Markup Languages........c.coccveriiminiieninncicsinns 7
1.2.2 Format and Information in a Markup Languageccccooeeeeieinnn. 8
1.2.3 CALS Markup Languages........cc.coovvoriiiiriiiiiicieien e 8
1.2.3.1 Markup MinimizZation ...t 9
1.2.3.2 OMITTAG .o 10
1.2.3.3 Short References ...t 10

1.3 DefiNTHONS . eeceiieeieie et 11
2. THEIV & V PROCESS 12
2.1 Initial Considerationst 12
2.1.1 Reference DOCUMENES......ccoiviiiiriiiriiciceeicie e 12
2.1.2 CONEEXE couieicecictiie et 13
2.1.3 AUAIONCE. oottt 13
2.2 PrOCEAUTE ...ttt s s 14
2.2.1 Background Analysis ..o 16
2.2.2 Problem ANalySiS......ccccoiiiiiieeiti s 17
2.2.2.1 Purpose of the Markup Languagecocceovcveremmveiisicnsiinninnn. 17
2.2.2.2 Goals of the Markup Language.........ccocccevcevivcmnuniisenicnnnicnnane. 18
2.2.2.3 Constraints on the Markup Language..........cccocvvnnninnnccncaen 18

2.2.3 Design ANAlYSiS...cooooiririnriniiinisiit et 19
2.2.3.1 Structure OUHNE ... 19
2.2.3.2 Structure DIagraml.....ccocoeieieiiiinieiiieiecni st 20
2.2.3.3 Data DICHONATY ..cviiiiieiiiiiei e 24

2.2.4 Markup Language Definition Analysis and Testing........c...cccc..... 24
2.2.4.1 Links from DTD to DeSign ..o 25
2.2.4.2 Testing the DTD oot 25
2.2.4.3 Testing the Document INStaNCe.......ccoovvccmieminiiinicninniiincnnn. 26

2.2.5 Testing Sample DOCUMENLS...c..cuoruimrinirieiiecmsiienciisnscisssinssssasinrens 28
2.2.5.1 Markup EITOIS oottt 29
2.2.5.2 Cross-ReferenCescovwmrmriniiieisiiieieiesseteie st eseneeese e 29
2.2.5.3 Proper Functional Identificationcccocvmeemeieniccncnnn, 29
2.2.5.4 Markup InConsistencies............ccccooveuevcvnirnneinsescrccnnnenncnncnn 30

2.3 Completing the IV & V Task. ..o 30
3. SUMMARY 32

CALS DTD Validation & Verification

1. INTRODUCTION

Document Type Definition Independent Verification and Validation is the
final step in the process of creating and testing an SGML Document Type
Definition prepared in compliance with the CALS standard MIL-M-28001A.
The sequence of tasks of which Independent Verification and Validation is
the final step includes:

e examination and analysis of a selected class of related documents, and of
the use that is expected to be made of those documents;

* design of a markup language which effectively and efficiently captures
the information in documents of the selected type;

« formal description of the markup language using a Document Type
Definition (DTD) conforming to the Standard Generalized Markup
Language (SGML); and

* testing the markup language and its formal description by marking up
sample documents of the selected class and processing them in ways that
exemplify their expected uses.

Independent Verification and Validation (I V & V) examines these tasks,
determines if these tasks have been completed, how accurately and effectively
each one was accomplished, and how well each task is documented. 1V &V
is crucial to confirming the usability of a DTD produced by a DTD Design
Project.

This report describes:

1. the background and principles on which IV & V is based,

2. what a IV & V project is looking for in a DTD and its accompanying
documentation,

3. how to analyze a DTD and its documentation, and
4. how to prepare a Document Type Definition Independent Verification
and Validation Final Report.

The DTD 1V & V Final Report provides the documentation of the task of
Independent Verification and Validation. It is the deliverable from arl V & \'
project.

1.1 Background

The military specification MIL-M-28001 provides a basis for developing text
markup languages that form a key component of the Computer-aided
Acquisition and Logistics Support (CALS) initiative of the U.S. Department of

CALS DTD Verification & Validation

Defense (DoD) and of industry. The basic markup language provided in MIL-
M-28001 does not in all cases adequately support the content requirements of
technical manuals. During the transition from a paper to a digital
environment, other markup languages have had to be developed, based on
MIL-M-28001, to capture the critically important information content of these
documents. Study of various types of technical manuals has revealed that
some function very differently from others, and it has become evident that
one general style of markup language would be insufficient for all
requirements. Some technical manuals are not even best suited to print
applications, but would be represented more effectively by hypermedia
applications with a heavy reliance on graphics. A markup language designed
primarily for a print-oriented application would not be robust enough to
support the functionality required in such manuals.

The markup languages developed in addition to the basic one provided in
MI1.-M-28001 incorporate new concepts, it is critical that they be tested,
verified, and validated. This report describes the process of independent
verification and validation of markup languages, their formal descriptions,
their documentation, and their use.

1.1.1 CALS

CALS is designed to achieve the transition from paper-based acquisition and
logistics processes to automated and integrated modes of operation. In more
concrete terms, CALS is a set of standards and specifications which dictate the
automation requirements for a set of technical data including engineering
drawings, product definition and logistics support analysis data, technical
manuals, training materials, technical plans, and reports.

The scale of the problem addressed by CALS is exemplified by the subset of
technical manuals called technical orders. The technical orders include
publications that contain instructions for the installation, operation,
maintenance, training, and support of weapon systems, weapon system
components and support equipment. The U.S. Air Force requires
approximately 150,000 technical orders to operate and maintain their systems
and equipment.

The present Air Force Technical Order system is paper-based, with documents
printed, distributed, and stored at enormous expense, monetarily and
environmentally. The time spent accessing the information in these
documents and the time spent producing documents and updating them also
represent an enormous expenditure. With the current print-based system,
there can be a substantial time-lag (measured in years) between the date on
which a change is implemented physically in the field and the date on which
the documentation reaches those who actually use and maintain the changed
equipment.

CALS DTD Validation & Verification

The implementation of CALS will help alleviate all types of expenses
involved in writing and maintaining text and drawings. CALS will begin to
replace the current expensive, unwieldy system by a state-of-the-art “.
‘system of systems’ that can create, transform, store, reproduce, change,
distribute, and use information as it evolves through the design,

manufacture, maintenance, and logistics support [processes].”"
1.1.2 SGML

The Standard Generalized Markup Language (SGML) is a machine-
processable language which is used to describe the syntax and structure of
markup languages. A markup language is described in two parts:

1. The lexical structure of a markup language is described by an SGML
Declaration. The lexical structure determines the form of the marks that
are used to identify different parts of text. This includes what characters
are used as delimiters and, where names are used in markup, what
characters can appear in names, whether or not the distinction between
upper- and lower-case letters is significant in names, and limits on the
length of names.

The lexical structure of a markup language also determines how
characters are coded. Different computer character sets use different
numbers to represent the upper-case letter “A”, for example. Which
number is used to represent the upper-case letter “A” is determined by
the SGML Declaration. Character sets are usually invariant over a large
class of computers and applications, so the encoding of the character set
is usually not of concern to the user. However, when documents are
prepared on one system and transfered to another, some provision has
to be made for describing the character set used in a document. The
SGML Declaration allows for this.

2. The syntactic structure of a markup language is described by a Document
Type Definition (DTD). The syntactic structure determines how the
marks and characters defined by the SGML Declaration are used in
combination to represent information with complex structure.

What SGML does not provide for is the definition of how marked-up text is
to be interpreted. In other words the “meaning” of a document’s markup
cannot be determined without documentation in addition to an SGML
Declaration and a DTD. In addition, a DTD is not a suitable form of
documentation either for personnel preparing marked-up documents or for
personnel creating computer software that processes marked-up documents.

IKurt N. Molholm, “The DoD Computer-aided Acquisition and Logistics Support (CALS)
Initiative”,Electronic Transfer of Information and its Impact on Aerospace and Defence
Research and Development, AGARD-CP-466 (AGARD 1990), p. 14-1.

CALS DTD Verification & Validation

As a consequence, it is as important that the DTD IV & V task determine that
a markup language is documented in ways usable by both these groups, as it is
that the markup language perform its function of capturing the information
in the selected class of documents.

1.1.3 MIL-M-28001 and MIL-M-28001A

MIL-M-28001, “Markup Requirements and Generic Style Specification for
Electronic Printed Output and Exchange of Text”, “establishes the
requirements for the digital data form of page-oriented technical publications.
Data prepared in conformance to these requirements will facilitate the
automated storage, retrieval, interchange, and processing of technical
documents from heterogeneous data sources. The requirements set forth by
this military specification include:

a. procedures and symbology for markup of unformatted text in accordance
with this specific application of the Standard Generalized Markup
Language (SGML),

b. SGML compatible codes that will support encoding of a technical
publication to specific format requirements applicable to technical
manuals,

c. output processing requirements that will format a conforming SGML
source file to the style and format requirements of the appropriate
Formatting Output Specification Instance (FOSI) based on the Output

Specification (0S).”2

In other words, MIL-M-28001 provides a markup language for technical
manuals, the formal description of that markup language by an SGML DTD,
and a formal specification of how a document so marked up is to be
formatted.

MIL-M-28001, published 26 February 1988, contained a “conforming” DTD and
a “nonconforming” DTD. The conforming DTD defined a markup language
that was intended to apply to all documents whose published format
conformed to MIL-M-38784B, “Manuals, Technical: General Style and Format
Requirements”. The nonconforming DTD was intended to provide a starting
- point for documents whose requirements are not accommodated by the
conforming markup language, either because the published documents
varied significantly from the specifications in MIL-M-38784B or because the
intended uses of the documents varied significantly from those envisioned in
MIL-M-28001.

ZMIL-M-280014, Military Specification —Markup Requirements and Generic Style
Specification for Electronic Printed Output and Exchange of Text, 20 July 1990, p. 1.

CALS DTD Validation & Verification

MIL-M-28001A was published 20 July 1990. The major change from MIL-M-
28001 was the recognition that the requirements of few, if any, documents
could be satisfied by MIL-M-38784B, especially with the increasing need to
support the information storage requirements of database applications. MIL-
M-28001A therefore concentrates on what in MIL-M-28001 were called
“nonconforming” documents and provides a “template” document type
definition which defines a “baseline tag set”, on which markup languages are
expected to be based. The “conforming” DTD is relegated to a later annex,
primarily to serve as an example of using the template DTD. MIL-M-28001A
can be thought of as describing a class of markup languages, of which the
conforming one is an example.

Existing markup languages developed under the CALS umbrella are based on
MIL-M-28001, MIL-M-28001A, and on intermediate drafts of MIL-M-28001A.
MIL-M-28001A incorporates changes to MIL-M-28001, especially with regard to
the markup of tables. There is a tendency, therefore, for markup languages
based on different versions of MIL-M-28001 to vary: the same thing may be
done in different ways. MIL-M-28001A is now the approved standard, and
markup languages based on earlier drafts should be considered for being
brought into line with its specifications.

MIL-M-28001A also introduces a standard way of describing formatting
requirements for marked-up documents. Where formatting is a significant
requirement of documents in the selected class, a FOSI specification of how
they are to be formatted, based on that in MIL-M-280014, should be provided.

As more interest is developed in electronic, non-print applications of
technical manuals it is to be expected that even greater variations will be
required in the markup languages that support such applications. Examples
from existing CALS document types for which variant markup languages
have been proposed are the Fault Isolation and Fault Reporting Manual types
defined by the publishing specification MIL-M-83495A, “Manuals, Technical,
On Equipment Set, Organizational Manuals: Detailed Requirements For
Preparation Of”. The production of automated aids to the detection and
repair of faults in equipment presents requirements far different from those
of a print-oriented environment. As a consequence, manuals such as these
need to be marked up in different ways from those intended primarily for
print.

These variant markup languages introduce the requirement for Independent
Verification and Validation. The correctness, applicability and utility of the
variant markup languages and of their formal description cannot be assumed
without thorough checking and confirmation.

MIL-M-28001A itself embodies new concepts, Any examination of its
application necessarily consists in part of examining the applicability of the

CALS DTD Verification & Validation

class of markup languages based on MIL-M-28001A, and the utility of the
form of documentation presented in MIL-M-28001A.
1.2 What Is A Markup Language?3

Although a project that results in the development of an SGML DTD based
on MIL-M-28001 is usually described as “DTD Design”, the primary

deliverable from such a project is a markup language for a selected class of
documents. This primary deliverable is documented in two forms:

1. The DTD itself is a description of the markup language in a machine-
processable form. Using the DTD, computer software can “parse” text
that uses the markup language, and perform further processing on its
data content. Examples of further processing include formatting the text
for the printed page, analyzing text for readability or technical content,
and loading the text into a database.

2. Human-readable documentation is provided both to describe, in natural
language terms, how to use the markup language, and to describe, in
more formal terms, what information is captured by the markup
language.

Additional documentation describes the criteria which form the basis of the
development of the markup language and the DTD. It also describes the process
of testing the markup language and its definition.

A markup language provides the basis for entering and storing text

~ interspersed with marks (or markup). The markup both identifies the

components of text and distinguishes these components. Once marked up,
these components can be assembled into a structure that makes explicit their
interrelationships.

A markup language is similar to a human language in that it “packages”
components of information in a structure. This structure is determined by
the method of packaging; it does not necessarily directly represent the
structure of the information itself. The syntactic structure of a sentence of
speech is the structure of the sentence, not the structure of what is being
talked about. The syntactic structure of marked-up text is likewise the
structure of the markup. This will only be the same as, or even similar to, the
structure of the information represented by the markup when the latter
structure is linear and relatively simple.

3The discussion of markup languages has been copied and adapted, with permission, from
Exoterica Complex Tables (EUM09-0291-2), Software Exoterica Corporation, 18 February 1991,

pp- 1-2.

CALS DTD Validation & Verification

The structure of a markup language, like that of a human language, is defined
by its grammar. Like utterances in a human language, documents marked up
in a markup language have to be processed to determine their “meaning”.
Determining the “meaning” of a complex marked-up document typically
involves repackaging the information in the document into the form
(structure) required by a text formatting language or a database system. This
repackaging can require:

* making copies of text,
* moving text around,
* creating “boilerplate” text, and

* transforming text (the simplest form of which is exemplified by
uppercasing titles).

Using a markup language to enter text has long been found to be the most
effective method of creating complex text documents. When used in
conjunction with generic markup techniques, markup languages allow
precise identification of the components of documents while at the same time
avoiding limiting the documents to specific representations. Multiple uses
can be made of a single generically marked-up document. Documents stored
as plain-text files with clear text markup are amenable both to efficient entry
and editing, and to processing by computer programs.

1.2.1 Types of Markup Languages

There are many different kinds of markup languages. A markup language
can represent a very abstract view of information. This is the ideal of generic
markup languages. A markup language can, on the other hand, directly
represent a physically-realizable structure, such as that of a formatted
document. Most markup languages are somewhere between these two
extremes, although the growing need to use data for more than one purpose
means that there is an increasing tendency to aim for the generic ideal.

When designing a markup language, care must be taken to distinguish
between the marks and the structure of the markup language. The markup
must allow the text components and their structure to be identified. It must
also be easy to enter, and easy to read, both to ensure reliable markup on
entry, and to facilitate editing and revision. On the other hand, there is no
need to make the structure of the markup language explicit. The marks
themselves are important to the input operators and editors. The structure
serves to assemble the marked-up text for later processing and transformation
into the structure of what is being represented.

The kinds of markup languages that can be designed are limited by the tools
that are available for implementing them. SGML is a standard

CALS DTD Verification & Validation

for describing the grammar and marks of markup languages. Its adoption and the more
recent introduction of sophisticated tools for processing marked-up

documents, mean that powerful markup languages can now be designed and
implemented.

1.2.2 Format and Information in a Markup Language

Information captured by a markup language can either be print-oriented,
data-structure-oriented, or a combination of both. The usual arrangement of
text into various levels of headings and paragraphs corresponds both to the
manner in which it is usually formatted, and to a logical, hierarchical
structure of information. Paragraphs grouped under a heading usually deal
with the same topic. Headings and paragraphs, therefore, represent both
print-oriented information and an underlying structure of data content.

Codes in text have meaning in another context, such as reference to other
material or part numbers. The marks that identify topical keywords or codes
illustrate the capture of non-print-oriented information. Tables, on the other
hand, usually represent a particular presentation of the information they
contain. This presentation is primarily print-oriented.

Although data-content-oriented markup is the ideal, this is sometimes
impractical, as tables illustrate. A markup language for the information in
tables would ideally provide markup for each kind of information in each
table, in such a way that all the interrelationships could be found. A
presentation or storage format for each type of table would then be
determined by formatting, presentation or database software. However, tables
are ubiquitous and varied, creating and supporting what would in effect
be a separate markup language for each table is generally impractical. The
alternative is a generalized presentation-oriented markup language for tables
as presented in MIL-M-28001A.

1.2.3 CALS Markup Languages

SGML was established as the standard for defining markup languages used by
Federal Organizations (and therefore CALS) by Federal Information
Processing Standard FIPS PUB 152. FIPS PUB 152 specifies that the OMITTAG
and FORMAL optional features of SGML be supported, as well as the “Core”
concrete syntax. The OMITTAG feature provides additional functionality for
the definition of markup languages. The FORMAL feature constrains the
form of system-independent file identifiers to that described in ISO 8879. The
Core concrete syntax differs from the “Reference” concrete syntax usually
used by SGML-defined markup languages in not allowing any “short
references” to be defined. The FIPS allows, but does not require, the support
and use of other optional features of SGML.

MIL-M-28001 and MIL-M-28001A use only the OMITTAG and FORMAL
optional features. MIL-M-28001 uses the Core concrete syntax. MIL-M-28001A

CALS DTD Validatio:. . verification

uses the Reference concrete syntax, although short references are used only in
limited contexts.

1.2.3.1 Markup Minimization

The OMITTAG optional feature and short references provide two ways of
determining which “marks” are used in a markup language. They are called
“minimization” features because, among other things, they reduce the
number of keystrokes required to enter markup.

The reduction of keystrokes and the consequent improvement in the
efficiency of entering marked-up text . are important benefitof using SGML-
defined markup languages. These are not, however, the major reasorsfor using
SGML’s minimization features. The major benefit of minimization is in the
improved clarity of documents that use appropriate markup languages
defined using these features.

Appropriately designed markup languages improve the clarity of a document
by:
reducing the amount of extraneous markup,

2. making the size of the “marks” appropriate to what they are marking up,
and

3. using “marks” of a form that suites the surrounding material.

The OMITTAG optional feature and short references support all these ways of
improving the clarity of markup. OMITTAG reduces the number of items of
markup required. Short references allow the use of forms of markup other
than “tags” (i.e. start- and end-tags). Short references are especially useful in
markup-intensive contexts where tags would tend to overwhelm small
fragments of text. '

Clearly understandable document markup benefits both data entry operators,
and editing staff. For data entry operators, having no unnecessarily
redundant markup and having markup that is meaningful in terms of the
text around it reduces the incidence of errors. For editors, this same markup
makes documents easier to read and interpret.

These SGML features have been designed in a manner to allow these benefits
to be realized with a wide range of applications, and on a large number of
systems. They are not limited to one particular application or hardware base.

Consistency between markup languages is important. But, a markup
language based on MIL-M-28001A should consider using both OMITTAG and
short references in a more extensive manner. It should do MIL-M-28001A
where doing so would produce a functionally efficient markup language.

CALS DTD Verification & Validat:an

1.2.3.2 OMITTAG

OMITTAG allows a markup language definition to specify that cerain items
of markup can be implied by the presence of other markup (using well-
defined rules provided in ISO 8879). For example, the end of a paragraph can
be implied by the start of a new paragraph or chapter, if the formal definition
of the markup language is appro riately constructed. Similarly the start of a
chapter can be made to imply the start of a chapter title.

OMITTAG is a powerful accessory in markup language definition. It
substantially reduces the amount of markup required — usually by close to
50%. OMITTAG is easy to use. Markup operators can be provided with
simple rules for its use, such as “starting a paragraph ends the previous
paragraph”. (The general rules for OMITTAG can be summarized as: the start
of something can be implied by that something being the only thing allowed
at that point, and the end of something can be implied by some text or
markup being present in the document that is not allowed without the
something being ended prior to what is present.)

MIL-M-28001 and MIL-M-28001A do not use the full power of OMITTAG.
These specification take advantage of OMITTAG in most cases where an end
can be readily implied. The ability to omit redundant markup at the start of
an element, on the other hand, is used only in a few of the possible cases.

1.2.3.3 Short References

MIL-M-28001A makes use of the mathematics markup defined in ISO/IEC TR
9573.4 The math package makes more extensive use of CMITTAG than the
rest of the MIL-M-28001A markup language. As well, it makes use of the
short references allowed by the Reference concrete syntax. Short references
allow the use of context-specific marks in place of the basic named tags and
entity references whose syntax is defined by ISO 8879. As their name implies,
short references are (usually) shorter than the equivalent tags and entity
references. They are especially appropriate for contexts where intensive
markup is required.

The math package is illustrative of text that requires more detailed markup
than that needed to mark a simple view of chapters and paragraphs. In such a
context, tags and entity references would tend to overpower the small
amounts of text that intervene between them, and make the content very
difficult to enter and edit accurately. The need for consistency

among markup languages used in a given environment dictates that the

4150/1EC 9573, Information processing — SGML Support Facilities — Techniques for Using
SGML, International Organization for Standardization (I5O), 1989, pp. 83-98.

10

CALS DTD Validation & Verification

CALS style of using OMITTAG and short references be maintained for

marking up the kinds of textual structures dealt with in MIL-M-28001A. But the
increasing use intensive markup to capture detailed, non-print-oriented
information will require increased use of the minimization features of SGML
when marking up new forms of material.

1.3 Definitions

Document Type Definition (DTD) — “rules, determined by an application,
that apply SGML to the markup of documents of a particular type. A
document type definition includes a formal specification, expressed in
a document type declaration, of the element types, element
relationships and attributes, and references that can be represented by
markup. It thereby defines the vocabulary for the markup for which

SGML defines the syntax.”>

Markup Language — a language whose expression consists of placing marks
in text for the purpose of capturing its information content.

Standard Generalized Markup Language — “a language for document
representation that formalizes markup and frees it of system and

processing dependencies.”®

Validation — the process by which soundness, reasonableness, and adequacy
are confirmed according to user requirements and accepted principles.
Applied in the context of CALS, the principles include the rules of
SGML, MIL-M-28001, and all relevant publishing specifications.

Verification — the process by which correctness and accuracy are confirmed
by means of examination or demonstration; testing the usability of
what was built. Applied to a CALS-based markup language and DTD,
examination will include parsing by an SGML parser and
demonstration will include the use of the markup language described
by the DTD to mark up a sample document with acceptable and
accurate results.

5150 8879-1986(E), Information processing — Text and office systems — Standard Generalized
markup Language (SGML), International Organization for Standardization (ISO), 1986, p. 10.

8bid. p. 19.

11

CALS DTD Verification & Validation

2. THEIV & V PROCESS

This chapter describes the IV & V process itself. In its simplest terms, the
process consists of determining whether a CALS markup language conforms
to the principles described in the previous chapter.

2.1 Initial Considerations

At the start of the process of independent verification and validation,
reference documents must be acquired, and the context and audience of the
1V & V Final Report determined.

2.1.1 Reference Documents

A list of all relevant standards, specifications and directives used during the
development of a markup language must be delivered as part of the
documentation of the markup language. The documentation available to the
IV & V task must include:

MIL-M-28001A: Markup Requirements and General Style (dated 20 July
1990).

If the markup language was based on MIL-M-28001 (dated 26 February
1988) or a draft of MIL-M-28001A dated prior to 20 July 1990, that draft
must also be available.

ISO 8879-1986: Information Processing — Text and Office Systems —
Standard Generalized Markup Language (SGML)

ISO 8879 must be used only in conjunction with Amendment 1
(published in 1988). This amendment incorporates vital corrections and
modifications to 15O 8879.

Standards and specifications which have historically been used to
describe the marked-up material. For Air Force technical manuals, for
example, the major document of historical importance is MIL-M-38784B:
General Style and Format Requirements.

Some fnarkup languages have been developed based on MIL-M-38784C.
If this is the case, MIL-M-38784C must also be available.

If additional or (for other services) alternative publication standards
have been used in the development of the markup language, they must
be consulted, either in addition, or instead of MIL-M-38784.

All directives which form part of the project’s background and which
may have influenced design decisions.

12

CALS DTD Validation & Verification

¢ The SGML DTD which formally describes the markup language. The
DTD must be available to the IV & V task in machine-readable form so
that its correctness can be confirmed by computer processing.

¢ The sample marked-up documents used to test the markup language.
The marked-up documents must also be available to the I V & V task in
machine-readable form, to allow machine analysis.

The sample marked-up documents must contain examples of each type
of markup allowed by the markup language. This means that the
sample documents must contain examples of each type of text allowed by
the original publishing specifications.

Where they exist, copies of the original documents from which the
sample marked-up documents were created must be provided, together
with the results of processing the sample marked-up documents.

* The documentation produced during the design and testing of the
markup language.

2.1.2 Context

The context of the IV & V process must be well understood. The most
important consideration is the rationale for developing the markup language
in the first place. This rationale, the history of the project, and all other
background considerations on which project decisions have been based must
be documented, either in the directives that initiated the project, or in
additional documentation provided to the I V & V task. The correctness and
appropriateness of a markup language cannot be fully evaluated without
considering all the decisions which determined its design.

The context of a project must be fully documented prior to the IV & V task.
Personnel performing I V & V have to be able, if necessary, to recreate any
part of the process that resulted in the creation of the markup language, the
DTD that formally describes it, and their documentation.

2.1.3 Audience

Another consideration is the audience for the documentation of the markup
language development project and the audience of the I V & V Final Report.

The terminology of the standards, specifications, etc.,being followed should
have been used throughout the documentation for the markup language
development project. Any new terminology must have been introduced only
with adequate definitions. The markup language documentation is addressed
to three audiences, each of which should be expected to comprehend only the
terminology appropriate to its use of the markup language:

13

CALS DTD Verification & Validation

1. The markup language itself should be documented in terms
comprehensible to personnel doing markup, or at least to those who
direct such personnel. There should be no unnecessary references to the
details of SGML concepts. petails of the applications to which the
marked-up documents are to be put should be avoided.

2. Documentation should be available that allows application developers to
make use of marked-up documents without being concerned with the
details of the markup language. This audience is only interested in the
information content of the documents and the structural
interrelationships between components of information. If the
documentation discusses the use of documents by a database application,
for example, then terms from database technology can be used in the
report without jeopardizing comprehension.

3. The SGML DTD that formally describes the markup language should be
described in terms of SGML: concepts, in terms of markup language
requirements, and in terms of what information is made available to
applications. The DTD is the link between the markup language and
applications that make use of captured information. 1ts design must
take both of these subject domains into consideration.

It should be noted that the details of the design of the DTD are only of
interest to its designers and those, such as the I V & V personnel, who
are tasked with examining it. Users of the DTD are no more concerned
with its details than the users of a computer program are concerned with
the details of the program’s implementation.

The findings of the I V & V task are of concern to those who are in a position
to act on its findings and recommendations, as well as to members of the
above three audiences. The IV & V Final Report must use the same
terminology as is used in the documentation of the markup language. In
addition, general findings must be reported without using the technical
language appropriate to discussing the details of using a markup language.

2.2 Procedure

The 1V & V task consists of subtasks that parallel the tasks that preceded it:
markup language design, formal definition, and testing. Personnel doing

[V & V follow a set of procedures that match those followed by the personnel
who developed the markup language. At each point in each procedure there
must be a document, on paper or in machine-readable form, which provides
the link between the original task and the [V & V subtask.

The following table demonstrates the parallelism between the markup
language development process and the I V & V process. It shows the

14

CALS DTD Validation & Verification

documents that provide the links between each pair of corresponding

processes.

DTD Development Process

Link

IV & V Process

Background analysis.

Standards and

Background analysis.

specifications
Problem analysis: define Supporting Evaluate analysis.
purpose, goals, and documentation
constraints.
Markup Language Design. |Structure Examine the documentation

description and
Data Dictionary

for completeness.

Formal Definition —
define the markup
language using an SGML
DTD.

DTD

(a) Evaluate correctness of
DTD by machine parsing.

(b) Evaluate accuracy of DTD
by comparing it to the
markup language design
documentation.

Markup Testing: mark up
sample documents.

Sample
marked-up
documents

Confirm accuracy of the
sample documents.

Information Capture
Testing: use the marked-up
document samples. For
example, produce
formatted output.

Output samples

FOSI

Compare output samples
with expectation
(represented by previously
published documents, where

available).

Table 1T — Relationship of Markup Language Development and IV & V

Tasks

The documents used by the IV & V task are evidence that original tasks were
performed. The following subsections describe the subtasks of the I V & V
Tasks, and draw more detailed parallels with the original markup language

development task.

If the markup language project has not produced all the documentation
required to do the analysis required by IV & V, the I V & V personnel may
have to create the missing documentation in order to enable them to
complete the IV & V task. Such documentation should be incorporated in
the DTD I'V & V Final Report. It is then available for incorporation into the
documentation of the markup language design documentation.

15

CALS DTD Verification & Validation

2.2.1 Background Analysis

Before the design of the markup language can begin, personnel must be
thoroughly conversant with the standards, specifications and directives
relevant to the task at hand. Personnel doing I V & V must be equally
familiar with these documents, and so must repeat in full this first subtask of
the personnel who designed the markup language.

The major standards and specifications to be analyzed provide the following
information:

1. ISO 8879 “provides a coherent and unambiguous syntax for describing

whatever a user chooses to identify within a document.”? This is the

general authority on SGML and is the standard on which MIL-M-28001,

MIL-M-28001A and all other CALS formal markup language definitions
are based.

MIL-M-28001 and MIL-M-28001A provide tools for the design of markup
languages for documents which conform to publishing specifications
based on MIL-M-38784. A Baseline Tag Set is provided as a template for a

markup language. A formal definition for a markup language for the
class of documents described by MIL-M-38784B is included, together with

markup language components that can be used to assemble new markup
languages.

MIL-M-28001A contains an Qutput Specification. An Output

Specification is a tool for defining a Formatting Output Specification Instance
(FOSI). A FOSI, in a similar manner to an SGML DTD, provides a
formal definition of how documents marked up using a particular

markup language are to be formatted. New markup languages should be
accompanied by a FOSL

Content and processing specifications provide the historical basis for
understanding the content of existing documents. Traditionally, the
primary technology used for disseminating the information found in
technical manuals was print, AS a consequence, the print formatting
specifications for the different types of manuals provide the largest single
source of information about the documents other than MIL-M-28001A.

MIL-M-38784 and other publishing specifications are the primary
authority on the components information present in each type of
document and the interrelationship between these components. It must
be clearly understood that the goal of these publishing specifications is
not to provide this information. They exist primarily to describe the
format in which already existing information is to be presented and have
a print-medium orientation. It is generally not possible to design a

Ibid. p. 2.

16

CALS DTD Validation & Verification

markup language (other than a text formatting language) based entirely
on these specifications.

The limitations of a publishing specification becomes clear when an
attempt is made to produce a formal description of a markup language
for the class of documents based on the publishing specification. Often
there is not enough information explicitly stated in the specification to
determine what combinations of structural elements are allowed in
conjunction with others, and what elements exclude the presence of
others.

Nonetheless, publishing specifications do contain substantial
information, and generally form the largest single source of information
on the potential content of a document.

When publishing specifications are provided as part of the information
on what a document must contain, they should be accompanied by
sample print documents that conform to the publishing specifications.
The sample documents serve to make explicit much of the information
that is implicit in the publishing specifications. The sample print
documents should exemplify everything described in the publishing
specifications. This usually requires more than one document.

These standards and specifications do not provide all the information needed
at this point in the task. Directives must also be provided indicating the goal
or goals of the markup language being designed. At its simplest, the goal
could be to reproduce the print forms of the documents. At its most complex,
the goals could be to provide enough information to enable an interactive
multimedia presentation of the documents to be created. The driving goals of
the CALS initiative are to take operational documentation away from a solely
print-oriented technology. so there must be stated goals for any markup
language project that take it beyond simply reproducing print documents.

2.2.2 Problem Analysis

2.2.2.1 Purpose of the Markup Language

This corresponds to what is actually the first step in the process of DTD
design. One must be able to state simply and clearly the “why” of the project.
One or two sentences should convey in general terms why the DTD is being
written and provide some information about the scope of the DTD. A general
statement describing the potential uses of the marked-up data is appropriate
here. At the end of the I V & V process, one should be able to refer to the
statement of purpose and ascertain that the DTD reflects the reasons it was
written.

Since those performing IV & V on a DTD are cognizant of all of the same
information available to those designing and writing the DTD, fair

17

CALS DTD Verification & Validation

evaluations can be made concerning the correctness and appropriateness of
the statement of purpose. This objective look at the purpose envisioned by
the DTD developers may suggest that the purpose as stated has been, for
example, too wide, or too narrow, or perhaps inappropriate. Comments on
the purpose should be compiled and included in the Final Report.

2.2.2.2 Goals of the Markup Lénguage

Simply stated, the goals list “what” the DTD should accomplish. At this point
one should have in mind the products of the DTD design and should write
the goals so that each product will be given appropriate attention in the
design process.

Goals should be stated in a logical sequence so that the design will proceed
according to that sequence and will not attempt, for example, to do specific
things before the general framework is designed.

In more specific terms, when a class of documents must comply with a
publishing specification, goals for a DTD for that class of documents must make
clear a fact. It is that all of the relevant information in the publishing
specification is reflected in the DTD, given the purpose of the DTD.

However, if the publishing specification dictates print formatting only, and
the DTD is to be used for other purposes, the goals must explicitly state that
the information captured in the DTD must be detailed and robust enough to
serve all other purposes as well. For example, if a DTD will be used for a class
of documents which must comply with a formatting specification, but which
also will be included in a text database, the structure of the DTD must provide
enough information for both cases. The goals must be explicit about
naming the specifications, databases, etc.

It must be explicitly stated that the DTD must be parsable by machine. If DTDs
are written according to ISO 8879, then they must be parsable by an SGML
parser, and that should be stated.

2.2.2.3 Constraints on the Markup Language

Constraints on a DTD design limit its use for specific reasons. The application
which will use a DTD may impose constraints on the structure because it is
able to use only a small set of elements. Perhaps the nature of the discipline
of the marked-up documents is such that one would require a less “verbose”
markup language. For example, when a document consists largely of lists of
part numbers, which themselves are made up of a number of structural
elements, one would not want lengthy tags to occur between the sections of
the part number. shorter, more symbolic language would be desirable here.
This type of constraint on the markup language should be stated clearly in the
list of constraints.

18

CAIjS DTD Validation & Verification

In the CALS context, the elements’ tag names are taken from the generic DTD
provided in MIL-M-28001 and MIL-M-28001A. However, new elements
which are defined during the DTD design exercise should exhibit a structure
and language which follow the style of the MIL standards mentioned. This is
a constraint specific to this context, but the same type of situation could occur
frequently and must be documented.

2.2.3 Design Analysis

The markup language designed to conform to the established standards and
to satisfy the stated goals of the project must be documented from two points
of view:

1. from the point of view of the process of marking up text and

2. from the point of view of the form and content of information captured
by markup.

Once the markup language development project is completed, these two
forms of documentation serve as documentation not only for the markup
language but also as the key components of the documentation of the DTD
that formally describes it.

The documentation for the process of marking up text is usually represented
by a “Structure Outline” or “Structure Diagram”. Both of these techniques
describe the “marks” placed in marked-up text, where these marks are
allowed, and what they signify. The meaning of markup depends, in general,
on where it is in a document. The structure presented with the markup
indicates where markup is allowed (and required).

The documentation for the form and content of information captured by
markup is usually represented by a “Data Dictionary”. A data dictionary
simply lists each component of the content together with its characteristics.

2.2.3.1 Structure Qutline

A structure outline itemizes the allowed components of a marked-up
document in order, as a list. Subcomponents of other components are
indicated by indented lists. Each item, corresponding to a component or
subcomponent, should be accompanied by information about:

* what the component represents, usually described in terms of the
original publishing specifications and project directives on which the
markup language is based;

* where in the original specifications and directives the information used
to define the component was found;

19

CALS DTD Verification & Validation

o the markup that accompanies the text or subcomponents and indicates
the presence of the component;

« how many occurrences of the component are allowed, or if it is optional;
and

* any notes required to explain why the component exists, if it does not
correspond one-to-one with some component of text described in the
original publishing specifications or project directives.

For documents as structurally complex as most of those of concern to the
CALS initiative, the structure outline has been found to be an inadequate
description technique. It is very hard to find one’s way around a structure
outline. When deeply nested structures occur, textual indentation does not
provide a strong enough visual clue as to which components are associated
with each other, and which are subsidiary to others.

The underlying problem with structure outlines is that they present markup
from a “hierarchical” point of view, whereas markup is primarily a linear
task. This is even though the data structures represented by markup are
hierarchical. For example, conceptually, a chapter consists€ a title, paragraphs
and subsections as subcomponents, and the subsection consists of a title,
paragraphs, and other material. However, from the point of view of the
markup language, the chapter title is followed by one or more paragraphs, a
subsection title and paragraphs of the subsection.

2.2.3.2 Structure Diagram

The structure diagram is an alternative method of describing markup. It uses
a graphical technique that focuses attention on the linear sequence of text and
markup in a document.

As elements of structure are pulled from the document in question, they can
be arranged graphically in terms of their sequence and occurrence. Their
names should be kept as descriptive as possible at this point.” In fact they
should be assigned names in the same terminology as that in the data from
which they were pulled. There should also be explicit links between the
paragraph(s) in the publishing specification, for example, and the structural
element as described in the data dictionary and in the graphic representation
of the structure. Figure 1 is such a structure diagram.

20

CALS DTD Validation & Verification

|

i

‘ Repeatable (one or more times)
| doc

/

|

|

1 Y

Y, volume
MIL-M-38784C . -
para 3.2.10.1 —— - —Reference to publishing specification

R
& '
2) part
Elements
MIL-M-38784C -~ ~
xR para 3.2.10.1 e “ ~
£~ - N—
front body rear
\ \
MIL-M-38784C MIL-M-28001 MIL-M-28001
para3.5 February Draft February Draft
Appendix C Appendix C
P
g
Optional (zero or one time)
Figure 1: Structure Diagram
’ Figure 1 is an example of the type of graphic structure diagram which is the

most useful way of portraying the structure of a document.

o e Each structural element is assigned a descriptive name and a box is
drawn around it. Large units of structure are identified first in this top-
down approach.

 Attached to each box is a clear link to the paragraph in the publishing
specification which explains the rules for that particular portion of the
text.

e The way the structure is drawn reveals the sequence of elements.

21

CALS DTD Verification & Validation

e One element may simply follow the other. This is indicated by
horizontal lines which run between the boxes, e.g., between the
“front”, “body”, and “rear” boxes in Figure 1.

e A choice may exist as to which element may appear after a given
element. In this case the boxes are organized one above another with
lines leading into each from a central path. From that central point
one could enter any one of the boxes and proceed through the
diagram. Note that in Figure 1 there are three choices at the outset:
one can begin by entering the “volume” box, the “part” box, or the
“front” box.

o Other lines on the diagram indicate occurrence:

'« An-element can occur once and lead directly to the next element (e.g.
from “front” to “body” to “rear").

e An element can occur optionally (zero or one time). This optionality
is shown by lines which loop down and under an element box with
an arrow at the end of the line indicating the direction in which that
line flows. The flow is generally from left to right (e.g. the lines
under the “front” box and the “rear” box).

e An element can occur repeatedly (one or more times). This
repeatability is shown by lines which loop up and back over an
element box with an arrow at the end of the line indicating the
direction in which that line flows. Optionality generally is indicated
from right to left (e.g. the lines over the “volume” box and the “part”
box).

e An element can occur optionally or repeatedly (zero or more times).
This is a.combination of the two previous examples and is shown in
Figure 2. The element can be missing completely, or it can occur
many times over at that point.

.22

CALS DTD Validation & Verification

primary paragraph
Repeatable
AN
Y
primary -
paragraph paragraph subpara
title material graph 1
MIL-M-28001 MIL-M-28001 MIL-M-28001
February Draft February Dratft February Dratt
Appendix C Appendix C Appendix C
para 1-1, p.301 para 1-1, p.301 para 1-1, p.301
F 4
7.
Optional

Figure 2

Up to this point, the structure diagrams have been used to describe the
sequence of components of a marked-up document. Once this structure has
been determined, the actual markup used in data entry can be added to the
diagram. The following illustrates adding markup in the form of SGML start-
and end-tags:

primary paragraph
Start-tags as found in DTD
|
~N
/ | N
/ N
’ primary * A y subpara-
paragraph|-(EEAEFE){ Paragraph | _(CeThparaTs rapn 1 [T —
title material grap) %
MiL-M-28001 MIL-M-28001 MiL-M-28001
February Draft February Draft February Draft /
Appendix C Appendix C Appendix C
para 1-1, p.301 para 1-1, p.301 para 1-1, p.301 /
/
1
N End-tag as found in DTD

Figure 3

CALS DTD Verification & Validation

The structure outline has been found to be very useful in describing a
markup language to data entry operators.

2.2.3.3 Data Dictionary

A data dictionary documents information captured by a markup language.

The data dictionary is one of the parts of markup language design which is
labelled supporting documentation. This is where the more “technical” and
detailed parts of markup language design begin. The type of manual or
technical order whose content and structure must be described is reviewed
from the beginning and the pieces of relevant information are “pulled out” .
Each piece of information which one may want to talk about as a unique piece
of structure should be described and documented in a number of ways.

o+ Elements — Elements which are pulled out as meaningful pieces of
structure must be defined and described. The information content of
each element must be described in “plain English” and everything about
that element should be documented.

e Attributes — If the element can be qualified by a number of attributes,
these should be listed as well with their possible values.

e Element content — Elements will often contain other elements and so
the structure of an element is described as a content model in the same
place as the rest of the description.

 Terminology — The terminology used in the data dictionary description
should be the terminology of the relevant publishing specification or
other standard. This is the place to which a person new to the project
would refer to obtain a full definition and description of any given piece
of structure.

e Order — Eventually, the data dictionary can be sorted into alphabetical
order and so it can serve as a helpful index with which to navigate
between manual, specifications/ standards, DTD, and marked-up
document.

2.2.4 Markup Language Definition Analysis and Testing

After verifying the correctness of the DTD design and validating the
reasonableness of that design, one can proceed to look at how well the DTD
reflects the design. A comparison of the DTD and the markup language with
the DTD design analysis will reveal if the DTD correctly reflects the design
and if the DTD reflects the design in valid ways.

24

CALS DTD Validation & Verification

2.2.4.1 Links from DTD to Design

There must be documentation available which demonstrates that the DTD is
indeed the one that was designed. The DTD itself, with element and entity
declarations, attribute lists, content models, etc, is not easy to read by anyone
other than a person directly involved in the writing of the DTD. One
essential part of supporting documentation is that which explicitly links the
DTD to its design and analysis.

When the supporting documentation includes something like the structural
diagrams described previously, it is a relatively easy task to link the structure
to the DTD in terms of tag names. The DTD includes generic identifiers
which are the actual tag names included in the markup language. It may not
be immediately obvious what the tag refers to; there must be a clear method
to link what is seen in the DTD with the documents which have been
analyzed to produce that DTD. One way of providing that link is to produce
another version of the structure diagram, this one with tag names actually
enclosing the structural features which they mark up.

With this type of arrangement one can travel both ways between a DTD and
its design analysis. In the documentation provided as part of the analysis, one
can see the markup language which one expects to find in the DTD.
Alternatively, if one is reading the DTD and needs more information about a
specific structural feature, the tag name in question may be found in the
structure diagram. Further, the structure diagram in turn will provide a
reference to the paragraph number in the publishing specification (or other
standard) which describes the rules for that particular portion of text.

There should be a one-to-one correlation between the parts of structure one
finds in the DTD and the types of structure which one finds in the design
analysis (in the data dictionary and the structure diagrams for example). If
that one-to-one correlation is found to be untrue, then the DTD must be
assumed to be faulty, given that the analysis has already been verified and
validated. All of the information identified in the analysis process must be
captured in the DTD. For IV & V purposes, if that fact cannot be verified,
then all areas of discrepancy must be reported and corrections suggested.

2.2.4.2 Testing the DTD

At this point some of the verification and analysis process can be automated.
It is hoped that the DTD will be provided for I V & V testing in machine-
readable format: If that is not the case, however, then the print version of the
DTD should allow for optical scanning. The physical format of the DTD is
important in this case. For instance, if the DTD is printed in a tabular format,
errors will occur wherever there is any slight irregularity in the format.
Proof-reading and correction will be required in this case, 1t will be

25

CALS DTD Verification & Validation

difficult to ascertain absolutely that the resulting machine-readable form is
identical to the original printed version. The fact remains however, that an
electronic version of the DTD is the only one that can be parsed by computer,
and that is the only way to accurately parse a DTD.

The most efficient and most accurate way to discover errors in a DTD is to
use a parsing tool. The results of the parsing exercise will clearly reveal errors
which have broken the rules of SGML. Such things as syntax errors,
ambiguous content model errors, mixed content models, and errors in cross-
referencing will be reported by the parser and these types of errors must be
corrected before the DTD can be used. Problems which have to do with style
only need not be corrected, but suggestions for improvements should be
made.

There are other design details which should be reviewed when looking at the
DTD specifically. DTDs are technical documents in their own right, and there
is a style associated with writing a DTD. That style can be commented on as
having an impact on the readability of the DTD, for example. One practice
that would impair the readability of a DTD is that of using expanded entity
references where they occur in the DTD. Sometimes an entity reference is
used many times over, and when it is lengthy and provided in its expanded
format each time, it makes the DTD visually and intellectually confusing.
This also a dangerous practice, because there may be two lengthy, but very
similar content models used in the DTD. It would be very easy to mistake
one for the other.

Other points of style should be considered. There are some things which
would not be technically wrong, but which would cause the document
marked up according to that DTD to be exceeding unwieldy. An example of
this is lack of tag minimization. If the DTD insists that all end-tags, for
example, must be included, then the resulting document instance would look
excessively cluttered. Not only that, the person marking up the document
would have a longer and more tedious job.

2.2.4.3 Testing the Document Instance

Another automated portion of the IV & V process is that of parsing the
document instance, or the marked-up document. Assuming that the DTD
has been parsed successfully, one can test its application and evaluate the
markup language for the following qualities:

technical accuracy
e convenience

e consistency

completeness.

26 |

CALS DTD Validation & Verification

Technical Accuracy. When a computer parses a document instance it will
report on each error in markup according to the DTD it is parsing against. As
in the case of the DTD, any serious technical errors must be corrected and the
corrections reported as part of the I V & V process.

Convenience. This is the point at which the markup language can be
evaluated, and here validation takes on a more prominent role. The markup
language must be considered from the point of view of the person who must
mark up the document and the reasonableness and convenience of the
language take on prime importance. Those coding the input text must be able
to identify quickly and easily what part of structure is at hand and how to code
that part of structure. If short references are used, they must be easy to enter
on the keyboard in terms of the sequence of keystrokes. They should also be
characters which are available on most keyboards, because this type of work is
intended to be device independent. There should also be a judgement made
as to the type of tag used in what context. It should be determined whether
verbose language and short tags are used in appropriate and convenient
places from the point of view of the person marking up the document.

As mentioned earlier, it is more convenient for the person coding the
document if such things as end-tags are allowed to be omitted. If end-tags
may be omitted in logical places there is less likelihood of error than if all
elements required end-tags. There would be places where a number of things
end concurrently, and it would be easy to miss one of them when working
quickly through a document.

Consistency. The markup language must be consistent in two ways. It must
be used consistently:

¢ inside one DTD, and

¢ between related DTDs.

Some examples will show how the language is to be used consistently. If
there is a particular type of structure, e.g. notes, cautions, and warnings, that
can occur at various places in the document, and if these types of structure
look the same wherever they do occur, the language which marks up these
types of structure should exhibit similar characteristics. The markup
language for a note, caution, and warning should be allowed in the same
places in the structure consistently. The way these type of structures are
marked up should be consistent as well. If the tags are verbose for some, they
should all be verbose; if short, then they should all be short.

The second area of consistency is inter-DTD. In the specific context of the Air
Force DTDs, elements which have the same structural function in a number
of DTDs should have the same names in each DTD. Some elements may be

CALS DTD Verification & Validation

optional in some DTDs and not in others, but the names should be the same
so as not to obscure the actual function of that element.

Completeness. All of the language necessary to mark up the document must
be available. It would be frustrating and inefficient to find a piece of structure
in a document for which no markup existed. There would be considerable
time wasted as well, because the person marking up the document would
have to contact the person who wrote the DTD and would have to wait for an
amendment to the DTD. Sometimes this can be a lengthy process.

2.2.5 Testing Sample Documents

Two types of documents are tested in this process:
 marked-up document instances, or input samples, and

e final formatted documents, or output samples.

The purpose of the input and output samples is to provide the user with a
practical indication of the relationship between a marked-up document and
the kind of formatted document he is accustomed to seeing. The input
samples, SGML marked-up documents, should contain a wide range of cases,
and include as many commonly occurring cases as possible. The output
samples, the formatted documents, should represent the marked-up
documents in the form that most clearly indicates the function of the
markup.

The input samples should use the optimum markup. To mark up a
document for output style alone is a very limited use of SGML, so the input
samples should not be limited by the requirements of the output samples.
Using markup to identify all the information in the input samples should be
the goal.

Sample documents should be examined for :

* information markup

* markup errors

e treatment of cross-references

+ proper functional identification

e markup inconsistencies.
Information Markup. All sample documents should exhibit information
markup, as opposed to formatting markup. Tags to identify such things as
tools, test equipment, and material, i.e.,,<tool>, <testeq>, and <material>, do

not affect formatting. But,they do capture bits of information which would be
very useful when included in a database, for example.

28

CALS DTD Validation & Verification

When information markup is used, it is vitally important that it be used
consistently and completely. For example, when a part number, <partno>, is
defined as an element, it should be used whenever part numbers occur. The
sample marked-up document should be reviewed carefully to reveal that
markup is complete and notes should be made documenting all cases of
incomplete markup.

2.2.5.1 Markup Errors

Sample marked-up documents must be “edited” simply for accuracy. It is easy
to tag a piece of information incorrectly when tag names are similar and one
is working quickly. A quality assurance process should be performed on all
markup to make sure that outright markup errors are caught, reported, and
corrected.

This step can be automated by passing the document instance through a
parser. All errors which represent violations of syntax and markup as
prescribed in the DTD will be reported so that corrections can be made.

2.2.5.2 Cross-References

The markup of existing reference and cross-reference elements should be
consistent, thorough and correct. For example, the publishing specification
may specify that references to paragraphs, steps, tables, charts, figures, etc.,
should be tagged with a reference tag. The IV & V process should ascertain
that all references are complete and accurate, and report on any that are not.

References are frequently made to other document numbers and titles and
these should be consistently marked up inside the document in which they
are referenced.

2.2.5.3 Proper Functional Identification

It is not sufficient for SGML markup to produce the correct output format in
just one application. Markup must represent the function of what is being
marked up, so that correct processing is assured on any system. It is

important to identify cases where samples have been marked up to produce a
particular typographical effect rather that to identify the function of the data
they contain. For example, titles which are marked up with tags to make
them print in a boldface font may actually be bold because they function as
titles. The boldness should not be marked up, but rather the function of being
titles.

Another example of proper functional identification is when samples of such
things as warnings, cautions, and notes are provided in a document. These
must be marked up as samples, not as actual warnings, cautions, or notes.

29

CALS DTD Verification & Validation

2.2.5.4 Markup Inconsistencies

Various inconsistencies can exist between the output document and the
marked-up document. It is important to verify that a formatted output
sample has indeed been produced by the markup in the input sample.

 Anything that is missing in the output sample, but is clearly marked up
in the input sample should be identified and reported on.

e Similarly, things that occur on the pages of the output sample must have
been marked up in the input document, and any discrepancies of that
type must be reported.

¢ An even more serious problem can occur; that is when something
appears in the output document for which there is no markup in the
input document, and no provision in the DTD. In such a case it is
obvious that the output document could not have been produced from
the input document.

2.3 Completing the I V & V Task

Simply put the Document Type Definition Independent Verification and
Validation Final Report must document the results of each of the IV & V
subtasks. Each subtask will require different forms of documentation. Some
will be narrative descriptions of the process and its results. Some will be the
output of an SGML parser used to process the machine-readable DTD and
sample input documents. Some will be sample formatted documents.

Where shortcomings are found in the delivered DTD, the markup language it
describes, the accompanying documentation or the sample documents
provided, the Final Report must indicate this and recommend action to be
taken. Such recommendations fall into four categories:

1. Recommendations for correcting or improving the markup language,
the DTD and the documentation can be simply enumerated.

2. Where the markup language, documentation or testing have been found
to be incomplete, and where the IV & V task found it necessary to
complete these tasks to enable [V & V to progress, a recommendation
can be made to incorporate parts of the DTD I V & V Final Report in the
documentation for the DTD Design project.

3. Where it was found to be impractical or inappropriate for IV & V
personnel to complete an incomplete DTD Design task, suggestions
should be made as to the form of what needs to be added.

4. Where the design of the markup language has been found to be
‘inappropriate for its function, a recommendation must be made to
restart the DTD Design project. Such a recommendation should be

30

CALS DTD Validation & Verification

accompanied by suggestions as to how the new project should differ
from the old.

Finally, the DTD 1V & V Final Report must summarize its findings. This is
particularly with regard to whether or not use of the DTD and the markup
language it describes can commence, or whether further design and
documentation is required.

31

CALS DTD Verification & Validation

3. SUMMARY

‘Document Type Definition Independent Verification and Validation is the
final, and a crucial, step in the process of creating and testing an SGML
Document Type Definition prepared in compliance with the CALS standard
MIL-M-28001A. Following the principles and steps described in the preceding
sections will result in a Document Type Definition Independent Verification
and Validation Final Report. The Final Report can then be used to determine
whether the markup language documented by a Document Type Definition
Design Project can be put into production, or if not what further work is
required to do so.

32

